
TCP socket protocol
description

31 January 2012

TCP socket protocol

Introduction

Overview
The protocol employed by eibnetmux for TCP socket clients is very, very simple. It
follows a simple request / response pattern. There are no sessions and there is no
connection state kept between two consecutive requests. In fact, a client could
theoretically close the TCP connection after receiving a response and reinitialise it for
the next request. Obviously, this is not efficient and abuses client and server resources.

For Linux-based systems, there is an even simpler option: use the C client library which
provides a few C calls to implement the protocol. Please refer to the man pages
contained in the source for documentation.

This document describes the formats of the request and response packets.

Request flow
When talking to eibnetmux over the TCP socket interface, a client should implement the
following request pattern:

Category Commands

Connection setup key exchange
diffie-hellman-merkle
authenticate
name

Request any request described in this document

Response acknowledgement
response
error

Disconnect exit
close TCP connection

Endianness / byte ordering
Care should be taken when passing parameters to eibnetmux. Generally, they are in
network byte order (big endian). The majority of PCs out there, x86-based systems, are
small endian and will need to convert parameters. Please refer to stabdard C library
(clib) functions htons() and htonl(), respectively.

31 January 2012 2 / 11

TCP socket protocol

Generic frame format
All request and response packets share the same structure:

Header Parameters

Command Param 1 Additional parameters

Field Description

header Must always be transmitted in full, even if the command does not
require any parameters.

command This is a single letter whose case is important (commands 'A' and 'a' are
very different, indeed, for example). It is 8 bit in size.

param 1 This is a 16 bit numeric parameter. It is in network byte order and
mostly used to specify KNX device addresses or data lengths.

additional
parameters

Some frames, especially write requests and read responses, need to
transmit additional information. This is the corresponding byte stream.
Its internal format is command-specific.

KNX addresses
Many commands require the specification of a KNX logical group. These addresses are,
commonly, in the form of m/s/g where m=maingroup, s=subgroup, g=group.

When communicating with the eibnetmux TCP socket server, such addresses must be
packed in 16 bits. The format is 0mmm msss gggg gggg.

Decoding KNX data
Eibnetmux receives KNX data from the bus in a so-called cemi frame. Its format is
defined as follows:

Field Bits Description

code 8 Transaction code

zero 8 This field is always 0.

ctrl 8 Priority and other flags.

ntwrk 8 Routing information.

31 January 2012 3 / 11

TCP socket protocol

saddr 16 Source address, physical KNX device address.

daddr 16 Destination address, usually logical KNX group address.

length 8 Number of bytes of data contained in frame.

tpci 8 Transport layer data.

apci 8 Application layer data.

data 0 — 112 KNX data formatted according to KNX logical group EIS code.

Some of the commands return the full cemi frame, others only the data part. It is important to note
that the data part starts with the apci field.
A KNX logical group's data type, the EIS code, must be known to be able to fully decode the data.
EIS stands for EIB Interworking Standards. It defines the following data types:

EIS Data bytes Function

1 0 Switching (on/off)

2 0 Dimming (up/down)

3 3 Time

4 3 Date

5 2 Value

6 1 Scaling

7 0 Drive control

8 0 Priority

9 4 Float value

10 2 16-bit counter

11 4 32-bit counter

12 4 Access

13 1 EIB-ASCII-Char

31 January 2012 4 / 11

TCP socket protocol

14 1 8-bit counter

15 1 — 14 String

Decoding algorithms are beyond the scope of this document. Please refer to the source
code of the PHP client library which contains encoding & decoding algorithms.

Request / response descriptions

Connection setup

Key exchange request, optional

If user authentication is required, passwords must not be transmitted in clear-text. With this
function, a client initialises creation and secure exchange of an appropriate encryption key. It will
result in a Diffie-Hellman-Merkle key exchange where the eibnetmux server provides its DHM
parameters to the client with the response to this command. Later on, the client will need to send
its own parameters using the diffie-hellman-merkle command (see below).

command K

param 1

additional parameters

Server DHM parameters response

This is the server's response to a key exchange command. It contains the Diffie-Hellman-Merkle
parameters (P, G, Ys) needed by the client to calculate the shared enctyption key.

command K

param 1 length

additional parameters block of size 'length' containing the server key
exchange parameters. It's internal format is defined
by PolarSSL's dhm_read_public() function.

Diffie-Hellman-Merkle request, optional

To conclude the DHM key exchange, the client sends its own parameters to the server. This
command must only be sent after receiving a Server DHM parameters response.

command D

param 1 length

31 January 2012 5 / 11

http://www.polarssl.org/

TCP socket protocol

additional parameters block of size 'length' containing the client key
exchange parameters. It's internal format is defined
by PolarSSL's dhm_read_public() function.

DHM ok response
Finally, the server responds with a positive status code.

command D

param 1 0

additional parameters

Authenticate request, optional
If eibnetmux has been setup with active security checks, the user must authenticate to be allowed
to perform KNX bus functions.

command A

param 1 length

additional parameters Streamof length bytes consisting of username and
encrypted password, both terminated by a NUL
byte. The length includes the terminator characters.

Authentication ok response
If username and password match, eibnetmux returns this status.

command A

param 1 0

additional parameters

Name request, mandatory
The client must set its identifier. It is used in status reports.

command a

31 January 2012 6 / 11

http://www.polarssl.org/

TCP socket protocol

param 1 length

additional parameters client identifier, usually this is the client type, e.g.
'webmon'. The identifier can be of any length but
only the first 64 characters are used.

Name ok response

Confirm setting of the client identifier.

command a

param 1 0

additional parameters

Get protocol version

Version request
Get version of eibnetmux TCP socket protocol.

command V

param 1

additional parameters

Version data response
The TCP socket API protocol version number.

command V

param 1 Version number.
Currently, this value is 3.

additional parameters

Reading data from KNX

Read request

31 January 2012 7 / 11

TCP socket protocol

Read the current value of a KNX logical group and return it.

command R

param 1 KNX logical group address

additional parameters

Read once request
Read the current value of a KNX logical group and return it. Immediately afterwards, the server
closes the TCP connection.

command r

param 1 KNX logical group address

additional parameters

Read data response
The eibnetmux server returns data retrieved from the KNX bus to the client.

command R

param 1 length

additional parameters KNX data starting with the apci field of the cemi
frame

Monitor request

Instruct eibnetmux to monitor the KNX bus for data packets sent to one or more KNX logical groups
and forward the packets to the client.
After specifying this command, the client must not send another command (except Exit) but keep
the TCP connection open and wait for eibnetmux responses.

command M

param 1 KNX logical group address mask
This is a bitmask of KNX logical group addresses
which are monitored. If you want to monitor
everything, specify 0xffff.

additional parameters

31 January 2012 8 / 11

TCP socket protocol

Monitor data response

Each KNX request seen on the bus is forwarded to the eibnetmux client (as long as the address
matches the mask).

command M

param 1 length

additional parameters full cemi frame

Writing data to KNX

Write request
Write new data to a KNX logical group.

command W

param 1 KNX logical group address

additional parameters length, value
Length is a 16-bit value specifying the number of
data bytes to follow for the value.
The value itself must be correctly formatted to
contain the apci and data fields of a cemi frame.

Write once request
Same command as Write except that eibnetmux closes the TCP connection after sending the value
to the KNX bus.

command w

param 1 KNX logical group address

additional parameters length, value
Length is a 16-bit value specifying the number of
data bytes to follow for the value.
The value itself must be correctly formatted to
contain the apci and data fields of a cemi frame.

Write confirmation response
If the write command was executed successfully, this confirmation is returned to the client.

31 January 2012 9 / 11

TCP socket protocol

command W

param 1 0

additional parameters

Terminate connection

Exit request

Instruct eibnetmux to close the TCP socket connection.

command X

param 1

additional parameters

Exit confirmation response

After returning this confirmation, the TCP socket is closed immediately.

command X

param 1 0

additional parameters

Error response

Error response
If an error occurs, eibnetmux will return an error code.

command E

param 1 error code
0x00 - no error
0x01 - socket closed
0x02 - connection table full
0x03 - bad request
0x04 - unknown command
0x05 - timeout
0x06 - unauthorised
0x07 - user name or password failure

31 January 2012 10 / 11

TCP socket protocol

0x08 - dhm operation failed
0x09 - wrong or missing parameter
0x0a - general communication failure

additional parameters

Additional commands
There is a list of additional commands used for management purposes.

Command Description

connect Connect eibnetmux' eibnet/ip client to remote server, e.g. an
N148/21.

disconnect Disconnect eibnetmux' eibnet/ip client from remote server.

get log level Return current log level.

set log level Set new log level.

status Return eibnetmux' status.

get access block Return current access block level.

block accesses Block access above this level.

close connection Forcibly terminate a client connection.

The documentation for these functions has not yet been completed. Please refer to the
source code of eibnetmux for detailed information.

31 January 2012 11 / 11

	Introduction
	Overview
	Request flow
	Endianness / byte ordering
	Generic frame format
	KNX addresses
	Decoding KNX data

	Request / response descriptions
	Connection setup
	Get protocol version
	Reading data from KNX
	Writing data to KNX
	Terminate connection
	Error response
	Additional commands

